AISB/TACAP World Congress 2012

Birmingham, UK, 2-6 July 2012

Symposium on the History and
Philosophy of Programming

Liesbeth De Mol and Giuseppe Primiero (Editors)

15

Part of
ALAMN TURIMG
—

Foreword from the Congress Chairs

For the Turing year 2012, AISB (The Society for the Study of Artificial Intel-
ligence and Simulation of Behaviour) and IACAP (The International Associa-
tion for Computing and Philosophy) merged their annual symposia/conferences
to form the AISB/IACAP World Congress. The congress took place 2—6 July
2012 at the University of Birmingham, UK.

The Congress was inspired by a desire to honour Alan Turing, and by the broad
and deep significance of Turing’s work to Al, the philosophical ramifications of
computing, and philosophy and computing more generally. The Congress was
one of the events forming the Alan Turing Year.

The Congress consisted mainly of a number of collocated Symposia on spe-
cific research areas, together with six invited Plenary Talks. All papers other than
the Plenaries were given within Symposia. This format is perfect for encouraging
new dialogue and collaboration both within and between research areas.

This volume forms the proceedings of one of the component symposia. We are
most grateful to the organizers of the Symposium for their hard work in creating it,
attracting papers, doing the necessary reviewing, defining an exciting programme
for the symposium, and compiling this volume. We also thank them for their
flexibility and patience concerning the complex matter of fitting all the symposia
and other events into the Congress week.

John Barnden (Computer Science, University of Birmingham)
Programme Co-Chair and AISB Vice-Chair

Anthony Beavers (University of Evansville, Indiana, USA)
Programme Co-Chair and IACAP President

Manfred Kerber (Computer Science, University of Birmingham)
Local Arrangements Chair

Foreword from the Symposium Chairs

Liesbeth De Mol! and Giuseppe Primiero

Given the significance of computing for modern society, the rele-
vance of its history and philosophy can hardly be overestimated. Both
the history and philosophy of computing only started to develop as
real disciplines in the *80s and "90s of the previous century, with the
foundation of journals (e.g. the IEEE Annals on the History of Com-
puting, Minds and Machines and the like) and associations (SIGCIS,
IACAP, . . .), and the organization of conferences and workshops on
a regular basis. A historical awareness of the evolution of computing
not only helps clarifying the complex structure of the computing sci-
ences, but it also provides an insight in what computing was, is and
maybe could be in the future. Philosophy, on the other hand, helps to
tackle some of the fundamental problems of computing: the seman-
tic, ontological and functional nature of hardware and software; the
relation of programs to proofs and, in another direction, of programs
to users; the significance of notions as those of implementation and
simulation, and many more. The aim of this conference is to zoom
into one fundamental aspect of computing, that is the foundational
and the historical problems and developments related to the science
of programming.

Alan Turing himself was driven by the fundamental question of
‘what are the possible processes which can be carried out in comput-
ing a number’. His answer is well-known, and today we understand
a program as a rather complex instance of what became known as
the Turing Machine. What is less well-known, is that Turing also
wrote one of the first programming manuals ever for the Ferranti
Mark I, where one feels the symbolic machine hiding on the back
of the Manchester hardware. This was only the beginning of a large
research area that today involves logicians, programmers and engi-
neers in the design, understanding and realization of programming
languages.

That a logico-mathematical-physical object called ‘program’ is so
controversial, even though its very nature is mostly hidden away, is
rooted in the range of problems, processes and objects that can be
solved, simulated, approximated and generated by way of its execu-
tion. Given its widespread impact on our lives, it becomes a respon-
sibility of the philosopher and of the historian to study the science of
programming. The historical and philosophical reflection on the sci-
ence of programming is the main topic at the core of this workshop.
Our programme includes contributions in

1. the history of computational systems, hardware and software

2. the foundational issues and paradigms of programming (semantics
and syntax, distributed, secure, cloud, functional, object-oriented,
etc.).

Our wish is to bring forth to the scientific community a deep under-

1 Postdoctoral fellow of the Fund for Scientific Research — Flanders, CLMPS,
Ghent University, email: elizabeth.demol @ugent.be

2 Postdoctoral fellow of the Fund for Scientific Research — Flanders, CLMPS,
Ghent University, email: giuseppe.primiero@ugent.be

2

standing and critical view of the problems related to the scientific
‘paradigm’ represented by the science of programming. The kind of
questions analyzed and relevant to our task are:

e What was and is the significance of hardware developments for
the development of software (and vice versa)?

e In how far can the analogue and special-purpose machines built
before the 40s be understood as programs and what does this mean
for our conception of ‘program’ today?

e How important has been the hands-off vs. the hands-on approach
for the development of programming?

e What is the influence of models of computability like Church’s
lambda-calculus on the development of programming languages?

e Which case studies from the history of programming can tell us
today something about future directions?

o Is programming a science or a technology?

e In how far does it make sense to speak about programming
paradigms in the sense of Kuhn?

e What are the novel and most interesting approaches to the design
of programs?

e How do we understand programs as syntactical-semantical ob-
jects?

e What is the nature of the relation between algorithms and pro-
grams? What is a program?

e Which problems are the most pressing ones and why are they rel-
evant to more than just programmers?

e How can epistemology profit from the understanding of programs’
behavior and structure?

e What legal and socio-economical issues are involved in the cre-
ation, patenting or free-distribution of programs?

The invited speakers for this symposium are Gerard Alberts and
Julian Rohrhuber. Gerard Alberts (University of Amsterdam) is a
well-known historian of computing. He is the series editor of the
Springer book series on the history of computing and one of the ed-
itorial members of the leading journal on the history of computing,
viz. IEEE Annals for the history of computing. He is also the project
leader of the SOFT-EU project. In his talk, he is going to tackle the
rather philosophical question: What does software mean?, by study-
ing how it developed historically. Julian Rohrhuber (Robert Schu-
mann School of Music and Media in Diisseldorf) is a co-developer
of the open source computer language SuperCollider, a language for
real time audio synthesis and algorithmic composition and an experi-
enced live coder. Apart from this more ‘practical’ work, he has made
various contributions to philosophy of science in general and the phi-
losophy of programming in particular. He will present some of his
philosophical reflections on programming. As an additional Special
Event, Julian can also be seen in action during a live performance
on Wednesday July 4th titled “When was the last time you spent a

pleasant evening in a comfortable chair, reading a good program”
(Jon Bentley). Live coding to celebrate the Turing Centennial, by
the Birmingham Ensemble for Electroacoustic Research and Julian
Rohrhuber playing improvised algorithmic network music.

The other contributors to this Symposium and their talks are:

e Wolfgang Brand, Two Approaches to One Task: A Historical Case
Study of the Implementation and Deployment of two Software
Packages for the Design of Light-Weight Structures in Architec-
ture and Civil Engineering

e Selmer Bringsjord and Jinrong Li, On the cognitive science of
computer programming in service of two historic challenges

e Timothy Colburn and Gary Shute, The Role of Types for Program-
mers

e Edgar G. Daylight, A Compilation of Dutch Computing Styles,
1950s—1960s

e Vladimir V. Kitov, Valery V. Shilov, Sergey A. Silantiev, Anatoly
Kitov and ALGEM algorithmic language

e Shintaro Miyazaki, Algorhytmic listening 1949-1962. Auditory
practices of early mainframe computing

e Pierre Mounier-Kuhn, Logic and computing in France: A late con-
vergence

e Allan Olley, Is plugged programming an Oxymoron?

e Uri Pincas, On the Nature of the Relation between Algorithms and
Programs

e Nikolay v. Shilov, Parallel Programming as a Programming
Paradigm

Our programme will be followed by a double session on Philoso-
phy of Computer Science meets Al and Law, organized by Rainhard
Bengez (TU Miinchen) and Raymond Turner (University of Essex).
The Symposium on History and Philosophy of Program-
ming is intended as a follow-up to the First International
Conference on History and Philosophy of Computing (www.
computing-conference.ugent.be), a IACAP sponsored
event. The Conference, which took place in November 2011 at Ghent
University, represented a first approach to build a community of
philosophers and historians working in the area of the computational
sciences. The present smaller Symposium will be a bridge to the Sec-
ond edition of the History and Philosophy of Computing Conference,
to be held in October 2013 in Paris. We hope everyone interested
in the historical and systematic study of computational sciences and
their intersections with other sciences and its applications will get
involved in what promises to be a crucial and exciting research area.

Anatoly Kitov and ALGEM algorithmic language

Vladimir V. Kitov! and Valery V. Shilov? and Sergey A. Silantiev >

Except several publications (see, for example [4]), many achieve-
ments of Soviet programmers for the period from 1950 till 1980 prac-
tically are still remained unknown abroad. The reasons for this are
several secrecy of some works, many open papers were published in
Russian language and thus were unavailable for foreign scientists etc.
But these achievements were very considerable. It is sufficient only
to mention such original developments as REFAL metalanguage for
formal language text processing (V. F. Turchin, middle of 1960) or
EI’-76 high level language (V. M. Pentkovsky, middle of 1970) which
was Assembler language as well.

One of the scientists who made significant contribution to the the-
ory and practice of algorithmic languages development was Anatoly
Kitov (1920-2005) — outstanding Russian scientist in the field of in-
formatics and computing (Fig. 1) . Another famous Russian scien-

Figure 1. Anatoly Kitov, c1965

tist, IEEE Computer Society Computer Pioneer academician Alexey
Lyapunov called Anatoly Kitov the first knight of Soviet cybernetics.
This was not accidentally. Anatoly Kitov was the real pioneer and the
words the first and for the first time can be applied to all stages of his
scientific career. A. Kitov was the author of the first in the USSR pos-
itive article about cybernetics which was not recognized by official
Soviet communist ideology. He had published the first Ph. D. thesis
on programming, the first Soviet book about computers and program-
ming, the first articles on non-arithmetic utilization of computers. He
was the author of the first project of wide-national computer network,
the first national textbook on computer science, the first scientific re-
port on management information systems (MIS), etc. He designed
the most powerful Soviet computer of that time, established the first
scientific computer Centre (the so called Computer Centre nr 1 of
the USSR Ministry of Defense), developed the associative program-
ming theory, created the standard industrial management information

1 Institute of History of Natural Sciences and Technics Russian Academy of
Science, email: vladimir.kitov@mail.ru

2 MATI - Russian State Technology University, email: shilov@mati.ru

3 MATI - Russian State Technology University, email: intdep@mati.ru

system (for the Ministry of Radio Engineering Industry) etc. The to-
tal amount and innovative quality of his scientific works are really
impressive. Unfortunately due to some political reasons his research
activity was not officially recognized in Soviet Union [6].

In the second half of nineteen fifties Anatoly Kitov for the first
time formulated proposals for complex automation of information
processing and state administrative management on the base of Inte-
grated computer centre state network (ICCSN). On January 7, 1959
A. Kitov sent in the Central Committee of the Communist Party of
the Soviet Union the letter about the necessity of National economy
automated management system on the base of ICCSN. It was first in
the world proposal on designing of national state automated system
for economics management. The leadership of USSR partly adopted
Kitov’s project but the main idea about the structural reconstruction
of National economy management system was rejected [7].

That is why in Autumn1959 Anatoly Kitov sent the second letter
in the Central Committee in which he proposed the new innovative
project which advanced the modern times on several dozen years. It
was the project named Red Book establishing of integrated computer
centre state network of dual designation (for economics management
and defense control). But once more due to the political reasons this
project was rejected and, moreover, its author was excluded from the
Communist Party, dismissed from his job at Computer Centre and
later discharged from the Soviet Army.

At the beginning of nineteen sixties A. Kitov was the head and
scientific supervisor of the group of programmers who were devel-
oping large program complex for real time military computer used
in air defense system. At this time he was working at Scientific Re-
search Institute nr 5 of the Ministry of Defense. Material which de-
termined the specifications for the future programming language had
been got by A. Kitov from his practical experience during the realiza-
tion of above mentioned project. However he had begun development
of ALGEM (ALGorithms for Economy and Mathematics) language
some years later, when after his dismissal from the army he worked
at Main Computer Centre of the State Radio-Electronic Committee.
ALGEM was designated for the programming of the economical,
mathematical, logical and control (including the real time control of
the technical systems) tasks. In particular the extremely important
was the aim of this work to design the language for the programs
for processing the large (super large at that time) information arrays
of complex but determined structure. In 1965 the first version of AL-
GEM was finally developed. The expertise of ALGEM was fulfilled
in some Soviet scientific institutions and in particular at Computer
Centre of Siberia Branch of USSR Academy of Science (facsimile
of the letter from the USSR State Committee for Scientific Research
Coordination to Siberia Computer Centre with the request of exper-
tise is shown on Fig. 2).

In 1967 A. Kitov published the monograph The programming of
informational logical tasks in which for the first time ALGEM lan-

W e
. S
& *f;::»ﬁ' o

BAPELEITETE, BAMARLAEY, =
e st

Bempuraes Sms g pmeleperel smarne gt Caripee-
AL 23N AACIN, T ERE S ol Tas e T ke
Feecpue TxpIapcTRMREE ROEERC k.

OERUALTEIEY Misaanians rom B b srwwns gpen
omlmnn n [aypees vnpamneeEr

LEETATE SIS S

I
adm iy
f||

Figure 2. The letter of USSR State Committee for Scientific Research
Coordination.

guage was described [1]. This language was realized in the system
of computer programming ALGEM ST-3 (ST-3 — Syntax-directed
Translator, the 3rd version) described in 1970 in monograph [5]. Be-
sides ALGEM the system included translator and standard subrou-
tines library. The system ALGEM ST-3 was realized on the base of
the second generation computer “Minsk-22" (Fig. 3).

Figure 3. Soviet computer Minsk-22

The development of this computer was ended in 1964. For that
time it was middle class computer with the efficiency of 5-6 thou-
sand operations per second, ferrite core main memory with the 8196
cell capacity of 37 bit each and external memory on magnetic tape
with the 1.6 million cells. Computer was produced by series from
1965 till 1970. Minsk-22 was one of the most mass computers for
that time and altogether 953 machines were manufactured. It was in-
stalled at hundreds of computer centres in various Soviet ministries
and later in some socialist countries. Appropriately ALGEM ST-3
included in Minsk-22 software was also had several hundred of in-
stallations and was widely used during the development of various
applied systems which were designated for the processing of hospi-
tal charts, application forms, results of experiments etc.

According to the concept of the author ALGEM must have been
the procedure-oriented programming language. That is why Algol-
60 was selected as a base for the new language. But the practical
orientation of ALGEM determined the deep modification of the ba-
sic language and introduction of serious alterations: new block nest-

ing mechanism, new variable types and also the special advanced
instruments for the work with the values densely packed in computer
memory cells.

Program structure is the same as in Algol: declarations followed
by operators in order of their execution. Variables are localized in
the block: begin end. The program can be only the block. Four vari-
able types are determined in ALGEM: integer, real, Boolean, string.
Values of numerical variables may be numbers, values of logical vari-
ables logic values and of string variables strings in contrast to Algol.

In ALGEM there is a possibility to describe the structure of
variables by means of declarator shape (in Russian vid). It points
the quantity and type of symbols contained in variable value:

integer P shape 9 (5) means that integer variable P has the length of
five decimal digits;

integer P shape 7 (3) P has the length of three octal digits;

integer P shape 1 (8) P has the length of eight binary digits;

string date shape 99 — L(10) — 9(4) means that string variable date
has the following structure two decimal digits, space, up to 10 letters,
space, four decimal digits (for example 21 September 2012).

In declaration of real variables you may point the sign of number
and exponent, location of decimal point and possibility of rounding.

These possibilities were introduces in the language because of ne-
cessity for programming the air defense tasks which demanded the
highest possible compact value package in memory cells.

Variables in ALGEM language may be simple and composite
(composite variables have not shape tag). Composite variable con-
tains other variables including composite as well and in fact it is a
record type.

Composite arrays are also provided in the language. They are
formed from composite variables of similar structure. Declaration
of composite value is always ended by symbol level. Thus, there is
the opportunity to work with arrays of records (i. e. tables). All these
means make it possible for ALGEM to solve specific economical
and management tasks of any level (they are also attributable to the
systems of real time, in particular to air defense systems).

There are also compound operators in the language except blocks.
It provides unlimited nesting of blocks and composite operators as
well. The operators are the same as in Algol: assignment operator,
go to operator, conditional jump, loop operator. Instead of procedure
operator it was introduced procedure-code operator (that is why there
is no declaration of procedures among list of declarations).

Not consider further details of the differences between two lan-
guages we only want to mention that ALGEM mainly was designed
for practical purposes of industrial programming while Algol is a
classical language for algorithms presenting.

ALGEM also included the best instruments of the functional pro-
gramming languages Lisp and IPL-V but it was the essential exten-
sion of these languages by addition of new list structures and proce-
dures for their processing. For example, Lisp functions provide the
processing of two adjacent elements of linear and chain lists. Kitov
introduced generalized list structures node lists and nested lists. For
the declaration of list variables it was introduced list declarator. To-
gether with the level symbol it forms the pair of parentheses. List
declarations begins with /ist symbol followed by declaration of list
header and then by list element structure. The list element may be
the list itself.

One more A. Kitov’s monograph “The programming of economi-
cal and management tasks” [2] was issued in 1970. Next year this
book was translated in German language [3] (covers of Kitov’s
four monographs about ALGEM language and it implementation are

shown on Fig. 4). New version of the language ALGEM-2 was pre-
sented in this book. This language was further development of AL-
GEM and was also oriented on the solving of economical and man-
agement tasks in information retrieval systems.

Frogranmisrung und Bearhwitung
grofier Infsmafisnsmengen

A waTan

MM ALAOHH

NUFHY ECAX
aaman

N el
\

I
PORAR A7 I

Figure 4. Anatoly Kitov’s books on ALGEM languag

ALGEM algorithmic language gained wide popularity and many
programs were written on it. For example, information retrieval
system “Setka-5" designed for searching the documents upon re-
quests was programmed on this language. This system was realized
on Minsk-22 computer and could process document arrays up to
120,000 items stored on 16 magnetic tapes. Search time in the ar-
ray of 10,000 items (i. e. on one magnetic tape) was 4-5 minutes.

In whole it may be said that ALGEM language was very suc-
cessful product oriented on industrial programming. It combined the
best features of procedure-oriented languages (Algol-60), languages
for complex data structures processing (COBOL) and list-processing
languages (Lisp, IPL-V). ALGEM realized principles of associative
programming developed by A. Kitov. In result ALGEM became one
of the most popular programming languages in USSR in 1970-s.

Later A. Kitov developed and introduced one more original pro-
gramming language NORMIN designed for solving the tasks in
medicine sphere but this is the theme of the separate investigation.

Today one can say that programming has not only osmotically in-
fused scientific and artistic research alike, but also that those new
contexts elucidate what it may mean to be an algorithm. This talk
will focus on the ‘impatient practices of experimental programming,
which can never wait till the end, and for which it is essential that the
modification of the program in some way integrates with its unfold-
ing in time. A contemporary example is live coding, which performs
programming (usually of sound and visuals) as a form of improvisa-
tion.

Early in the history of computer languages, there was already a
need felt for reprogramming processes at runtime. Nevertheless, this
idea was of limited influence, maybe because, with increasing com-
putational power, the fascination with interactive programs eclipsed
the desire for interactive programming. This may not be an accidental
omission, its reasons may also lie in a rather fundamental difficulty,
on which we will focus here.

In itself, the situation is almost obvious: not every part of the
program-as-description has an equivalent in the program-as-process.
Despite each computational process having a dynamic nature, an in-
tegration of programming into the program itself must in principle
remain incomplete. As a result, a programmer is forced to oscillate
between mutually exclusive perspectives. Arguably, this oscillation
reveals a specific internal contradiction within algorithms, a neces-
sary obstacle to semantic transparency. By calling this obstacle algo-
rithmic complementarity, | intend to open it up for a discussion in a
broader conceptual context, linking it with corresponding ideas from

philosophy and physics.

Here a few words about this terminology. Complementarity has
been an influential idea in conceptualising the relation between the
object of investigation, as opposed to the epistemic apparatus and the
history of practice. Originating in the psychology of William James,
where it referred to a subjective split of mutually exclusive observa-
tions, Niels Bohr used it to denote the existence of incommensurable
observables of a quantum system (position vs. momentum, time Vvs.
energy). Independent of the particular answer Bohr gave, comple-
mentarity raises the question of whether such a coexistence is in-
duced by the experimental system or already present in the subject
matter observed. Accordingly, in the case of programs, we may ask
whether this obstacle is essential to their nature or whether it is a
mere artefact of a specific formalisation. Algorithms, arguably sit-
uated between technical method and mathematical object, make an
interesting candidate for a reconsideration of this discourse.

The existence of an obstacle to semantic transparency within algo-
rithms and their respective programs need not mean a relative impov-
erishment of computation. Conversely, prediction is the wager and
vital tension in every experimental system, as well as in interactive
programming. After the conceptual discussion, I will try to exemplify
this claim by introducing a few examples in the recent history of /ive
coding. Again and again surfacing in form of symptoms such as an
impossibility of immediacy, I hope this practice will be conceivable
in terms of having algorithmic complementarity as one of its driving
forces.

REFERENCES

[1] Kitov A. I. programmirovanie informacionno-logicheskih zadach. ?os-
kva: Sovetskoye radio (programming for information-logical problems,
in russian), 1967.

[2] Kitov A. I. programmirovanie ekonomicheskih i upravlencheskih zadach
(programming for economic and management problems, in russian),
1971.

[3] Kitov A., I. Programmierung und Bearbeitung Grosser Informations-
mengen, B. G. Teubner Verlagsgesellschaft, 1972.

[4] Shura-Bura M Ershov A., The Early Development of Programming in the
USSR. In A History of Computing in the Twentieth Century, Academic
Press, 1980.

[S] Borodulina N. G. et al., Sistema avtomatizacii programmirovaniya AL-
GEM (ALGEM: automation of programming system, in Russian), Statis-
tika, 1970.

[6] Shilov V. V.Kitov V. A., Anatoly Kitov ? Pioneer of Russian Informatics,
History of computing. Learning from the past, Springer, 2010.

[7]1 Shilov V. V. Kuteinikov A. V., ‘Asu dlya sssr: pis?mo a. i. kitova n. s.
khrushchevu, 1959 g. (automated management systems for the soviet
union: A 1959 letter from a. i. kitov to n. s. khrushchev, in russian)’,
Problems of the history of science and technology, (3),45-52, (2011).

	1
	2

